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Abstract
After setting up a general model for supersymmetric classical mechanics
in more than one dimension we describe systems with centrally symmetric
potentials and their Poisson algebra. We then apply this information to the
investigation and solution of the supersymmetric Coulomb problem, specified
by an 1

|x| repulsive bosonic potential.

PACS numbers: 45.50.−j, 11.30.Pb

1. Introduction

The introduction of supersymmetry into classical mechanics has been motivated in part by the
study of supersymmetric quantum mechanics, e.g. in the influential paper by Witten [1], not
the least with the aim to find a classical ‘background’ for these models.

That this can be achieved has been long known, namely that classical supersymmetric
mechanics can be consistently constructed by replacing all dynamical quantities of the theory
in question by even and odd elements of a Grassmann algebra B according to their respective
bosonic or fermionic nature. This Grassmann-valued mechanics has been studied first by
Berezin and Marinov [2] and Casalbuoni [3]. A more recent account devoted to one-
dimensional systems was given by Junker and Matthiesen in [4]. For a general review of
Grassmannian geometry the reader may turn to the book by de Witt [5].

An interesting but somewhat different approach has been taken in a series of papers by
Gozzi et al [6]. Using path integral methods in classical mechanics he and co-authors construct
an N = 2 supersymmetric theory for any given Hamiltonian system, where fermionic fields
correspond to sections of various cotangent and tangent bundles of the configuration manifold.
It should be noted, however, that the resulting model differs from the one analysed in this
paper, so that solutions or symmetries cannot be directly compared.

While there is thus a considerable amount of literature on supersymmetric mechanics and
interest in the topic has grown recently, there is a surprisingly low number of specific models
that have been investigated and solved. Furthermore, attention is usually restricted to the case
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of one spatial dimension. An interesting exception on two-dimensional Liouville systems is
given in [7].

We try in this paper to address both of these shortcomings, first by establishing some
general properties of multidimensional supersymmetric mechanics, especially for centrally
symmetric potentials and then by analysing and solving a particular classical model, the
Coulomb problem. The 1/|x|-potential is one of the oldest and most prominent potentials
that has been studied in physics. This is not only because it properly describes both the
gravitational and the electrical interactions of massive or charged point particles, respectively,
but also because it has some very attractive features. One example is that by a theorem of
Bertrand [8] the attractive version of the potential is the only centrally symmetric potential
next to the harmonic oscillator such that every admissable trajectory is closed. Furthermore,
one can derive an explicit time-dependent solution for every given set of initial data. This
is a very useful property because it implies, if perhaps unexpectedly at first sight, that the
supersymmetric version of the theory can be explicitly solved, too.

This paper is based on the experience gained from an earlier investigation into one-
dimensional supersymmetric problems. Both in [9] and [10], where a different concept of
complex conjugation for Grassmann variables was used, one of the ideas of tackling the
supersymmetric problem was the assumption of a finitely generated Grassmann algebra B.
This led to a layer-by-layer structure of the theory which could be used to solve one-
dimensional models by subsequently solving higher layers based on the solutions of all lower
ones. We shall take a similar approach in this paper.

The starting point for our investigation will be the statement of the Lagrangian in section 2.
It is obtained ultimately from the familiar N = 2 supersymmetric (1 + 1)-dimensional field
theory with Yukawa interaction via dimensional reduction which leads to the description of
one-dimensional supersymmetric point particle mechanics analysed in [9]. The resulting
Lagrangian can then be generalized to more than one dimension. Note that supersymmetry
requires the bosonic potential to be non-negative. This means that our attention has to be
restricted to the case of repulsive interaction.

We go on to derive the complete set of 3n equations of motion and show that as in
the one-dimensional model there are two independent supersymmetries as well as a purely
fermionic invariance transformation which can be seen as an internal ‘rotation’ of the fermionic
variables. We proceed by giving one explicit solution to the fermionic equations of motion
utilizing the supercharges—except in the one-dimensional case this cannot be the complete
solution though. We then restrict our attention to a special class of models, namely those with
a centrally symmetric scalar potential. After restating the equations of motion we derive in
section 3 the explicit form of the supersymmetric angular momentum and show that it is a
supersymmetric invariant.

The symmetries of our model can be understood best from its Poisson algebra which we
therefore describe completely in section 4.

In section 5, we write the complete set of equations governing the supersymmetric
Coulomb problem. Even in three dimensions these are still nine coupled first- and second-
order differential equations and it seems by no means obvious that there will be an explicit
analytical solution for every possible set of initial data.

We use section 6 to show that such an explicit solution exists. This is achieved by
utilizing a method originally employed in [10] and then applied further in [9]. The key idea
is to decompose all dynamical quantities (and therefore every equation) into terms containing
the same number of Grassmann generators. The model then naturally obtains a layer structure
which can be analysed from the bottom layer, the classical problem, upwards. In particular,
solutions to higher layers may be found by using all those already derived for the lower layers.
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We will carry out this programme here up to second order in the Grassmann algebra—since our
results indicate a close resemblance of the multi-dimensional to the one-dimensional case we
can suspect that higher-order solutions exhibit many of the characteristics described already
for the one-dimensional case. We will give a short summary of these in our conclusions.

As mentioned we begin our analysis in section 6.1 with the bottom layer of the system
which is identical to the classical, i.e. non-supersymmetrized problem. Although the solutions
to the problem are well known we explain briefly how explicit time-dependent expressions
can be found—we do this because the textbook treatments of the problem usually only derive
the possible orbits but do not specify the actual functions of time that describe it.

The fermionic equations of motion comprise the next layer and we study their solutions
in detail in subsection 6.2. As in the one-dimensional case we find that fermionic motion is
not only compact but also restricted to a spherical space. Furthermore, while there is a plane
of motion for the bosonic variables (of lowest order) the same is not true for the fermionic
variables or, in other words, fermionic motion is non-trivial in all three spatial directions.

Finally, we solve the top layer of our system, consisting of the bosonic quantities of second
order in the generators. Though the particular solutions found in the one-dimensional case
cannot be applied directly to the Coulomb problem we can carry over the most important aspect
to the three-dimensional case, namely that solutions to the homogeneous equations of motion
of the top layer system are variations of the bottom layer system with the free parameters of
that motion. In particular, we show that every top layer solution to the homogeneous equations
of the Coulomb problem can be explained as a linear combination of the variations with initial
time, energy, eccentricity, orientation of angular momentum and orientation of the hyperbola
in the plane of motion. We conclude our analysis by a full statement of the explicit solutions
of the inhomgeneous equations including the boson–fermion interaction term.

As is well known, the classical Coulomb problem exhibits a hiddenO(3, 1)-symmetry as
a consequence of which there is an extra vector-valued conserved quantity, the Runge–Lenz
vector. It comes as an unexpected surprise that this symmetry is broken in the supersymmetric
version of the problem. We demonstrate this, i.e. that there can be no supersymmetric version
of the Runge–Lenz vector, in the appendix.

2. Multidimensional supersymmetric mechanics

We assume that supersymmetric mechanical models can be described by the following
Lagrangian:

L = 1

2
ẋ · ẋ− 1

2
U (x) · U (x) +

i

2
ψ+ · ψ̇+ +

i

2
ψ− · ψ̇− + iψ+∇U (x)ψ− (1)

which is a generalization of the familiar supersymmetric Lagrangian in one-dimensional
mechanics [9], ultimately derived from (1 + 1)-dimensional field theory. The dynamical
quantities x,ψ+ and ψ− are n-component vectors, e.g. x = (x1, . . . , xn),x is Grassmann-
even and ψ+ and ψ− are Grassmann-odd.

In addition, U is taken to be a vector-valued n-component Grassmann-even function of
x, so that ∇U is an n× n-tensor with elements ∂iUj (xk). We will usually take this tensor to
be symmetric which will always be the case if U is derived from a scalar potential term as
U(x) = ∇W(x).

x ·y denotes the standard Euclidean inner product, extended if necessary in the obvious
way: xMy,M being an n× n-tensor, stands, e.g. for the component expression xiMijy

j .
The equations of motion can now be read off from the Lagrangian:

ẍ = −∇U (x)U (x) + i∇(ψ+∇U (x)ψ−) (2)
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ψ̇+ = −∇U (x)ψ− (3)

ψ̇− = ∇U (x)ψ+. (4)

Every equation is vector-valued and has n components.
Invariance with respect to time-translation means that there is a conserved Hamiltonian

which can be calculated to be

H = 1
2 ẋ · ẋ + 1

2U (x) ·U (x)− iψ+∇U (x)ψ−. (5)

In addition, there are two independent supersymmetry transformations, namely,

δx = iεψ+ δψ+ = −εẋ δψ− = −εU(x)
(6)

δ̃x = iεψ− δ̃ψ+ = εU (x) δ̃ψ− = −εẋ
where ε is an infinitesimal scalar Grassmann-odd parameter. The corresponding conserved
supercharges are given by the expressions

Q = ẋ ·ψ+ +U (x) ·ψ− (7)

Q̃ = ẋ ·ψ− −U (x) ·ψ+. (8)

Finally, an internal transformation in the fermionic part of the Grassmann algebra, given by

δψ+ = ηψ− δψ− = −ηψ+

where η denotes an infinitesimal scalar Grassmann-even parameter, also leaves the Lagrangian
invariant. The resulting charge is simply

R = iψ+ · ψ−. (9)

One of the results from [9], which can be carried over from the one-dimensional case
almost without alteration, is that solutions to the fermionic equations can be found using
the supercharges. In one dimension (7) and (8) can be formally inverted to yield

ψ+ = 1

2E
(Qẋ− Q̃U ) (10)

ψ− = 1

2E
(QU + Q̃ẋ) (11)

where E is the constant Grassmann-valued energy. This is still a solution in the n-dimensional
case, though special care has to be taken if the real part E0 is zero.

Unlike the situation in one dimension, however, (10) and (11) give only part of the
fermionic solution. In the multi-dimensional case there is still a 2(n−1)-dimensional solution
space that needs to be determined.

3. Centrally symmetric potentials and angular momentum

So far these formulae have been straightforward generalizations of formulae from the one-
dimensional case. However, in more than one dimension there can be additional conserved
quantities if there are extra symmetries in the system. We will now assume that the scalar
bosonic potential

V = 1
2U (x) · U (x)

is central, i.e. a function of |x| = (x · x) 1
2 only. This can be easily achieved by demanding

that the scalar potential W(x) is a function of |x|, for then U (x) will be of the form

U (x) = W ′(|x|)x̂
with x̂ denoting the unit vector x/|x|.
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The equations of motion can now be written as follows:

ẍ = −W ′W ′′x̂ + i

(
W ′′|x| −W ′

|x|2
)
(ψ+(ψ− · x̂) + (ψ+ · x̂)ψ−)

+ i

[(
W ′′′|x|2 − 3(W ′′|x| −W ′)

|x|2
)
(ψ+ · x̂)(ψ− · x̂)

+

(
W ′′|x| −W ′

|x|2
)
(ψ+ · ψ−)

]
x̂ (12)

ψ̇+ = −
(
W ′

|x|
)
ψ− −

(
W ′′|x| −W ′

|x|
)
(ψ− · x̂)x̂ (13)

ψ̇− =
(
W ′

|x|
)
ψ+ +

(
W ′′|x| −W ′

|x|
)
(ψ+ · x̂)x̂ (14)

where the argument ofW is |x|. Note that the purely bosonic part of the problem is described
just by the first term on the right-hand side of (12).

For convenience we will now restrict ourselves to the three-dimensional case relevant for
the Coulomb problem, although our discussion should generalize easily to more than three
dimensions.

The particular form of the potential functionW means that there is an extra symmetry in
the system, given by rotating both the bosonic and the fermionic variables by the same amount
around the same axis a. Infinitesimally, we can write

δax = ε[a,x] δaψ+ = ε[a,ψ+] δaψ− = ε[a,ψ−]

where [·, ·] denotes the three-dimensional vector product, i.e. [x,y]i = εijkxjyk. This leads
to the conserved angular momentum

L = [x, ẋ] − i

2
[ψ+,ψ+] − i

2
[ψ−,ψ−]. (15)

Note that the second and third terms of L are non-zero since ψ+ and ψ− are Grassmann-odd.
It is an interesting observation that the strict condition for the existence of angular momentum
is that W is central. By choosing U = f (|x|)Ox;O ∈O(3) we end up with a rotationally
invariant bosonic potential V but angular momentum is not conserved.

Finally, we point out that the following two expressions are also time-independent:

[ψ+,ψ+] · [ψ−,ψ−]

([ψ+,ψ+] · ψ+) · ([ψ−,ψ−] · ψ−)

which can be said to denote the product of the oriented ‘areas’ and ‘volumes’ of ψ+ and ψ−,
respectively. They do not, however, constitute independently conserved quantities as the first
one is proportional to R2 and the second one to R3.

Apart from invariance under time translation, another important aspect is that of invariance
under supersymmetry. It can be shown directly that angular momentum and energy are
supersymmetric invariants whereas, e.g. the extra charge R is not:

δH = 0 δL = 0 δQ = −2εH δQ̃ = 0 δR = −iεQ̃

δ̃H = 0 δ̃L = 0 δ̃Q = 0 δ̃Q̃ = −2εH δ̃R = iεQ.
(16)

Here δ and δ̃ are the two supersymmetry transformations introduced in equation (6) and ε is a
Grassmann-odd infinitesimal parameter.
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4. Poisson-algebra

For a better understanding of the symmetries of our mechanical system we will now derive
the Poisson-algebra of the problem. Therefore, we must write the definition of the Poisson
brackets for Grassmann-valued quantities. To do this we have to introduce the canonical
momenta p and π by

p = ∂L

∂ẋ
π+ = ∂L

∂ψ̇+

π− = ∂L

∂ψ̇−
.

For the specific choice of our model one finds immediately that

p = ẋ π+ = − i

2
ψ+ π− = − i

2
ψ−. (17)

The fact that the canonical momenta associated with the fermionic variables are up to a
constant factor identical to these variables themselves means that ψ̇+ and ψ̇− cannot be
expressed uniquely as a function of configuration and momentum variables separately. It
is therefore sensible to view (17) as a constraint and replace all occurrences of π+ and π−
accordingly. Hamilton equations can then be written as

ẋ = ∂H

∂p
_p = −∂H

∂x
ψ̇+ = −i

∂H

∂ψ+
ψ̇− = −i

∂H

∂ψ−
so that the Poisson brackets for even quantities y and odd quantities θ have to be

{y1, y2} =
(
∂y1

∂xi

∂y2

∂pi
− ∂y2

∂xi

∂y1

∂pi
+ i

∂y1

∂ψ+i

∂y2

∂ψ+i
+ i

∂y1

∂ψ−i

∂y2

∂ψ−i

)

{θ, y} =
(
∂θ

∂xi

∂y

∂pi
− ∂y

∂xi

∂θ

∂pi
− i

∂θ

∂ψ+i

∂y

∂ψ+i
− i

∂θ

∂ψ−i

∂y

∂ψ−i

)

{θ1, θ2} =
(
∂θ1

∂xi

∂θ2

∂pi
+
∂θ2

∂xi

∂θ1

∂pi
− i

∂θ1

∂ψ+i

∂θ2

∂ψ+i
− i

∂θ1

∂ψ−i

∂θ2

∂ψ−i

)

where summation over i is implied. The result is the same as in [3] if the constraint (17) is
used to replace the occurrences of π+ and π− in the formulae given there.

We can then calculate the brackets between the dynamical variables and find the only
non-zero elements

{xi, pj } = δij i{ψ+i ,ψ+j } = δij i{ψ−i ,ψ−j } = δij .

From these we can finally determine the following algebra relations between all the conserved
quantities:

{H,H } = {H,Q} = {H, Q̃} = {H,R} = {H,L} = 0

i{Q,Q} = i{Q̃, Q̃} = 2H {Q, Q̃} = 0 {Q,R} = Q̃ {Q̃, R} = −Q
{L,Q} = {L, Q̃} = {L, R} = 0 {Li, Lj } = εijkLk {R,R} = 0.

5. The Coulomb problem

The supersymmetric Coulomb problem, characterized by an 1/|x| repulsive bosonic potential,
can now be obtained from (1) by setting

U (x) = 2
1
2

|x| 1
2

x̂ (18)
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or equivalently by choosing W(|x|) = 2
3
2 |x| 1

2 in (12)–(14). It follows that the equations of
motion now read:

ẍ = x̂

|x|2 − i
3

2

2
1
2

|x| 5
2

(
ψ+(ψ− · x̂) + (ψ+ · x̂)ψ− + (ψ+ · ψ−)x̂− 7

2
(ψ+ · x̂)(ψ− · x̂)x̂

)
(19)

ψ̇+ = − 2
1
2

|x| 3
2

(
ψ− − 3

2
(ψ− · x̂)x̂

)
(20)

ψ̇− = 2
1
2

|x| 3
2

(
ψ+ − 3

2
(ψ+ · x̂)x̂

)
. (21)

We will proceed to solve these equations for a Grassmann algebra with two generators in the
next section.

The formulae for all the conserved quantities need not be written again for our special
choice of U but it is worth mentioning the explicit form of the Hamiltonian

H = 1

2
ẋ · ẋ +

1

|x| − i
2

1
2

|x| 3
2

(
ψ+ · ψ− − 3

2
(ψ+ · x̂)(ψ− · x̂)

)
. (22)

In the purely bosonic case the Coulomb potential admits a further well-known conserved
quantity, the Runge–Lenz vector, given by

V RL = [L, ẋ] − x̂.
Unfortunately, this extra conserved quantity does not seem to exist for the supersymmetric
case. We will outline a proof for this in the appendix.

6. Explicit solutions

We will now solve equations (19)–(21) for the case of a Grassmann algebra with two generators.
In other words, we assume that all physical quantities take their values in an algebra that is
spanned by two Grassmann-odd elements ξ1 and ξ2, satisfying the relations

ξ2
1 = ξ2

2 = 0 ξ1ξ2 = −ξ2ξ1.

Using a method similar to that deployed in [9] we split the bosonic variablex into components
according to the number of generators involved:

x(t) = x0(t) + xij (t) iξiξj ≡ x0(t) + x1(t).

Taylor-expanding the potential functionU then gives us

U (x) = U (x0) + ∇U (x0)x1.

Note that all quantities are vector-valued. We will indicate components, if necessary, by lower
indices.

The fermionic variables are time-dependent multiples of ξ1 and ξ2 since for the particular
Grassmann algebra chosen there can be no product of three or more generators. Therefore,
in products of bosonic and fermionic quantities only bosonic terms of zeroth order in the
generators contribute. Writing

ψ+(t) = ψ1
+(t)ξ1 + ψ2

+(t)ξ2 ψ−(t) = ψ1−(t)ξ1 + ψ2−(t)ξ2
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both fermionic variables decompose into two terms with real-valued time-dependent
coefficients ψI+ and ψI−, respectively, where I = 1, 2.

The equations of motion for the coefficients are similar to (20) and (21)—the only
differences being that ψ+ and ψ− have to be replaced by the component functionsψI+ and ψI−
and x has to be replaced by x0.

While the fermionic equations thus do not look much different after the decomposition
the bosonic equation (19) splits into two, namely,

ẍ0 = x̂0

|x0|2
(23)

ẍ1 = x1 − 3(x1 · x̂0)x̂0

|x0|3 + a(x0,ψ+,ψ−) (24)

where

a(x0,ψ+,ψ−) = −i
3

2

2
1
2

|x0| 5
2

(
ψ+(ψ− · x̂0) + (ψ+ · x̂0)ψ−

+ (ψ+ · ψ−)x̂
0 − 7

2
(ψ+ · x̂0)(ψ− · x̂0)x̂0

)
does not contain x1.

Following [9] we will now systematically solve these equations by working ‘upwards’
from the bottom layer of the system (23) through the fermion equations (20) and (21) to the
top layer (24).

6.1. The bottom layer bosonic equation

The lowest order equation (23) is of course just the familiar equation of the Coulomb problem.
Its solutions are the well-known hyperbolae in the plane orthogonal to the angular momentum
vector L (if we set apart for a moment the special case L = 0). In order to make use of
the solutions for the remaining equations it will be necessary to write them in an explicit
time-dependent fashion. To do this we utilize a method first devised by Moser in [11] for the
Kepler problem with a negative total energy and then extended to the positive energy case by
Belbruno [12].

We can summarize these results adapted to our problem by saying that there is a
diffeomorphism between the constant energy surface H = E0 in the phase space of the
Coulomb problem and the tangent bundle of the upper (or lower) sheet of the hyperboloid
H specified in four-dimensional Euclidean space by X2

0 − X2
1 − X2

2 − X2
3 = 1. This

diffeomorphism takes geodesics on H into solutions to (23) requiring only a change of the
time variable.

More explicitly, if we parametrize a geodesic on H byXi(s), i = 0, . . . , 3, and denote by
Pi(s), i = 0, . . . , 3, its tangent then

x0(s) = P (s)(1 +X0(s))−X(s)P0(s) (25)

p0(s) = X(s)
1

1 +X0(s)
(26)

transforms this geodesic into a solution of the Kepler problem for the energy E0 = 1
2 , when

we assume the following transcendental relationship between the geodesic ‘time’-parameter s
and physical time t:

t =
∫ s

0
|x0(s′)| ds′. (27)
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Solutions for arbitrary energy can then be obtained by the scaling

x̃0 = 1

2E0
x0 p̃0 = (2E0)

1
2p0 t̃ = 1

(2E0)
3
2

t . (28)

Every geodesic on H can be mapped using an appropriate SO(3, 1)-transformation into

X(s) = (cosh s coshβ, sinh s, 0,− cosh s sinh β).

For the Coulomb problem this equates to choosing the plane of motion and the orientation of
the hyperbola in it. (Note that for the specific parametrization chosen we have also fixed the
origin of time.) Specifically, we get

x0 = (
e + cosh s,−(e2 − 1)

1
2 sinh s, 0

)
(29)

p0 =
(

sinh s

1 + e cosh s
,− (e

2 − 1)
1
2 cosh s

1 + e cosh s
, 0

)
(30)

where e = coshβ represents the eccentricity of the hyperbola. The relationship between s
and t is given by

t = e sinh s + s. (31)

This equation cannot be inverted analytically.
One can read off from (29) that the motion is indeed hyperbolic, taking place in the x1–x2-

plane with the focal points on the x1-axis and the origin of time chosen such that t = 0 at the
point of closest approach to the potential centre. We just mention that L is oriented in (−x3)-
direction and (for constant energy) |L| = (e2 − 1)

1
2 ; the scattering angle θ is determined by

e sin θ
2 = 1.

There are two special cases worth mentioning, namely e = 1 when the scattering angle θ
is π and the angular momentum is zero and e −→ ∞ when θ = 0 and the equations describe
free motion at an infinite distance from the centre of the potential.

6.2. The fermionic equations

To solve equations (20) and (21) for x ≡ x0 we can first go back to our general solutions (10)
and (11). They state in this circumstance that ψ+ and ψ− are linear combinations of ẋ0 and
U(x0) with Grassmann-odd coefficients. (Note that we can safely assume E0 > 0 due to the
repulsive nature of the Coulomb potential.)

To analyse the fermionic movement it is therefore sensible to look at the motion of ẋ0

and U(x0). The first interesting aspect is that if we combine velocity and potential in a
six-dimensional vector Z = (ẋ0,U ) then the motion of this vector takes place on S3, since

ẋ0 · ẋ0 +U · U = 2E0 = 1

for our particular solution, but ẋ0
3 = U3 = 0 trivially. This is in fact very similar to the

one-dimensional problem where motion takes place on S1 instead [9].
If we project the motion into the ẋ0

1 –ẋ0
2 -plane then this two-dimensional vector describes

a circle with centre at
(
0,−e/(e2 − 1)

1
2

)
(see figure 1). The motion starts for t = −∞ at

the intersection of this circle with S1, running initially towards the origin but then bending
towards the ẋ0

2-axis and reaching its nearest point to the origin at (0,−(e2 − 1)
1
2 /(e + 1)).

Then it turns back outwards and runs symmetrically to the other intersection point, reaching
it at t = ∞.

The projection into the U1–U2-plane shows a different picture. Due to the factor 1/|x0| 1
2

in (18) the motion starts and ends at the origin. It runs radially outwards along an asymptote
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Figure 1. Projection of the bosonic motion into the ẋ0
1 –ẋ0

2 -plane
(
e = 5

4

)
.
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Figure 2. Projection of the bosonic motion into the U1–U2-plane
(
e = 5

4

)
.

determined by the angular momentum but then bends towards the U1-axis, crossing it at time
t = 0 and returns to the origin in a symmetric way (see figure 2).
When we come back to solutions (10) and (11) we can immediately state that

lim
t→∞ψ+ = lim

t→−∞ψ+ = Qẋ0 lim
t→∞ψ− = lim

t→−∞ψ− = Q̃ẋ0

so that we know the asymptotic behaviour of these solutions.
However, we can visualize the fermionic motion completely if we refer to the bosonic

motion on S3. For this it is more convenient to use the real-valued components ψI+ and ψI−
than the Grassmann-valued quantities. One advantage is that we can meaningfully define the
length of these vectors: for example,

SI = 1
2

(
ψI+
)2

+ 1
2

(
ψI−
)2

is a conserved quantity arising from the invariance of the component equations of motion
under change of generators. Note that because we are dealing with real-valued quantities now,
none of the two products is zero.
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To understand the close connection between the above-mentioned bosonic motion on S3

and fermionic motion let us ignore the third components ψ+
I
3 and ψ−

I
3 for a moment, since,

as we will see later, their equations decouple. Combining the remaining fermionic terms into
the vector-valued object

	I = (
ψ+

I
1,ψ+

I
2,ψ−

I
1,ψ−

I
2

)
we see that 	I lies in the plane spanned by the bosonic vector Z = (ẋ0,U ) and one specific
orthogonal vector Z⊥ = (−U , ẋ0) obtained by rotating Z by 90◦ in the ẋi–Ui-planes for
i=1, 2. (We are neglecting the trivial third components here.) The angle between	I and the
two bosonic vectors is entirely specified by the two supercharges Q and Q̃. (To be more precise
it is specified by their real-valued componentsQI and Q̃

I
with respect to the two Grassmann

generators. For simplicity, we will not indicate this difference in our notation assuming that
the precise meaning is always clear from the context.) In other words, as the bosonic vector
Z moves on S3, determined by the bosonic equation of motion, the fermionic vector simply
follows this movement rigidly, its direction being fixed with respect to the bosonic vector and
its orthogonal complement by the two supercharges.

This result is very similar to the one-dimensional case where one finds similarly
constructed bosonic and fermionic vectors corotating on S1. Still, there is a major difference
in more than one dimension. This lies in the fact that Q and Q̃ do not specify the fermionic
solutions uniquely. The solution in one dimension can be derived by inverting equations (7)
and (8), yet in two or more dimensions this inversion is no longer possible. Instead, these
two equations only specify the two angles between 	I and the two bosonic vectors Z,Z⊥
but not more. This means that the general 	I (again neglecting third components) moves
simultaneously on two regular four-dimensional cones with centre at the origin and their
symmetry axes Z and Z⊥, respectively. As Z and Z⊥ move with time 	I follows rigidly
attached to the surface of both cones and thus lies on the intersection of them. In the particular
solution that we gave above this intersection corresponds just to one point (taken at fixed
distance from the origin), thus specifying this particular solution completely. However, in
general the intersection of the two cones (and S3) will yield a one-dimensional sphere ( just
as the intersection of two three-dimensional cones and S2 is equivalent to a zero-dimensional
sphere, i.e. two discrete points). All points on this sphere have the same combination of
supercharges Q and Q̃, which means that there exists a one-dimensional space of degrees of
freedom for the fermionic motion that is not determined by the supercharges.

In fact, we will now derive a second solution to (20) and (21) that fixes the motion of
	I on this one-dimensional space. Since the particular solution involving the supercharges
described above lies entirely in the Z–Z⊥-plane we will now look for a solution in the plane
orthogonal to it. (Remember that the space we are considering is four-dimensional.) This
plane can be spanned by the two vectors

Y = (
ẋ0

2,−ẋ0
1,−U2, U1

)
Y⊥ = (

U2,−U1, ẋ
0
2,−ẋ0

1

)
.

A straightforward ansatz for the second solution is 	 = PY + P̃ Y⊥, where P and P̃ are
Grassmann-odd constants. Yet, this ansatz turns out to be too simple and does not yield a
solution. Instead, we have to allow for time-dependent coefficients of Y and Y⊥. In other
words, we make the assumption that

	 = λ1(t)Y + λ2(t)Y⊥ (32)

where the λi are Grassmann-odd functions of time which still have to be determined. Inserting
this ansatz into (20) and (21) we find that the equations of motion are satisfied as long as the
coefficient functions λi(t) obey the condition
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λ̇i = − 1

2
1
2 |x0| 3

2

εijλj . (33)

This first-order differential equation for λi can be solved by

λ1(t) = P cosω(t)− P̃ sinω(t) (34)

λ2(t) = P sinω(t) + P̃ cosω(t) (35)

where P and P̃ are two Grassmann-odd constants and

ω(t) =
∫ t

0

1

2
1
2 |x0| 3

2

dt ′ = 1

2
1
2

∫ s(t)

0

1

(1 + e cosh s)
1
2

ds. (36)

This integral cannot be evaluated analytically but it can be written in terms of the standard
first elliptic integral F(s, k) as

ω(t) = −2
1
2 i

(e + 1)
1
2

F

(
i

2
s(t),

(
2e

e + 1

) 1
2

)
.

We can immediately read off from (36) that ω(t) is a monotonically growing function that
converges to a constant as t −→ ±∞ and that has only one zero at t = 0. The asymptotic
behaviour of ω can be described by the formula

ω∞ = lim
t→+∞ω(t) = − lim

t→−∞ω(t) = π

2e
1
2

P− 1
2

(
1

e

)
where P 1

2
(k) is the Legendre function of first kind.

There are two interesting limiting cases,namely e = 1 and e → ∞. BecauseP−1/2(1) = 1
and P−1/2(0) is a finite constant we find that ω → π

2 in the first and ω → 0 in the second
case. In other words, ω∞ is a monotonically falling function of e, taking values in the interval(
0, π2

]
.

Going back to equations (34) and (35) and inserting them into our ansatz (32) we thus
find the result

	 = P(cosω(t)Y + sinω(t)Y⊥) + P̃ (− sinω(t)Y + cosω(t)Y⊥) (37)

which can be interpreted as follows (substituting the real components 	I , P I , P̃
I

for the
Grassmann-valued quantities, if necessary): in addition to motion in the Z–Z⊥-plane the
fermionic vector can also move in the plane orthogonal to it. As in the previous case it is
rigidly attached to and corotating with two orthogonal bosonic vectors. The motion of these
two vectors, however, is slightly more complicated than before. They are not rigidly connected
to Z andZ⊥ in a vierbein but rather have a time-dependent phase (unless the eccentricity tends
to infinity so that our formulae describe a freely moving particle at infinite distance from the
origin, in which case ω(t) ≡ 0.)

This phase changes in a continuous fashion between −ω∞ and ω∞, where ω∞ depends
on the eccentricity of the bosonic solution and takes its maximum value π

2 in the case e = 1,
i.e. in the absence of the angular momentum.

Thus the second solution describes a circular motion orthogonal to the first but with a
time-dependent phase difference with respect to the rigid frame provided by the bosonic vector
Z and its three chosen orthogonals. We can think of this motion as parametrizing the motion
on S1 that we mentioned above.

So far we have neglected the third components ofψ+ andψ−, those in the chosen direction
of angular momentum, for which the bosonic movement is trivial (i.e. ẋ3 = U3 = 0). It was
one of the results from [9] that triviality of the bosonic solution does not extend to the fermionic
solution and the same can be observed in the multidimensional case.
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Since the bosonic motion takes place in the x1–x2-plane and therefore x3 ≡ 0
equations (20) and (21) simplify considerably:

ψ̇+3 = − 2
1
2

|x0| 3
2

ψ−3 ψ̇−3 = 2
1
2

|x0| 3
2

ψ+3. (38)

Incidentally, up to a factor of two these are the same equations as (33) and therefore have
(again up to a factor of two) the same solutions:

ψ+3(t) = O cos 2ω(t) − Õ sin 2ω(t) (39)

ψ−3(t) = O sin 2ω(t) + Õ cos 2ω(t) (40)

where O and Õ are two further Grassmann-odd constants and ω(t) is the same function as
before. The only difference consists of the extra factor of two and is responsible for a slight
change in the asymptotic behaviour: whereas the maximum phase obtained for t → ±∞
still converges to zero for e → ∞ implying that ψ+3 = O and ψ−3 = Õ are both constants,
this maximum phase now tends to π rather than π

2 for e = 1 meaning that for zero angular
momentum ψ+3 and ψ−3 describe a full circle.

So although there is no bosonic motion in the third direction (to lowest order) the fermions
somehow ‘see’ the bosonic potential and behave accordingly. In fact, we can think of (38) as
fermionic equation of motion for a one-dimensional Coulomb potential—the only difference
is that the strength of this potential is quadrupled with respect to the original problem. To see
this we have to interpret the right-hand sides of (38) as ∓Ũ ′(x)ψ∓ where Ũ ′(x) is given by

Ũ ′(x) = 2
1
2

x
3
2


⇒ Ũ(x) = − 2
3
2

x
1
2

.

Thus the imagined one-dimensional bosonic potential has to be

Ṽ (x) = 1

2
Ũ 2 = 4

x
= 4V.

This can be seen as an explanation for the extra factor of two appearing in the solutions (39)
and (40).

We want to conclude this section by a short discussion of the newly found fermionic
constants P, P̃ ,O and Õ since there is a major difference between them and the supercharges
Q and Q̃. Formally we can write all four constants as conserved quantities by simply inverting
equations (32), (34), (35), (39) and (40). However, they cannot be seen as an original symmetry
of the Lagrangian, in the sense that they cannot be derived as Noether charges by a variation
just involving the dynamical variables. On the contrary, to derive those charges from the
Lagrangian we have to presuppose a certain knowledge of the system, e.g. the orientation of
angular momentum, to find the correct variation. As an example, O and Õ can be formally
found as conserved quantities using the following variation:

δψ+3 = −ε cos 2ω(t) δψ−3 = −ε sin 2ω(t)

δ̃ψ+3 = ε sin 2ω(t) δ̃ψ−3 = −ε cos 2ω(t).

Evidently, neither function on the right-hand side is a function of the dynamical variables
only, instead we find a rather complicated function of time involving ω(t). In addition, this
variation would have to be different if we would alter the initial data of the bosonic motion,
for example, by making a different choice for the orientiation of angular momentum. Thus
P, P̃ ,O and Õ should be seen as ‘lesser’ charges, not comparable with the two supercharges
Q and Q̃ which are genuine Noether charges as we have seen above.

There are, however, some interesting observations about the interrelation of these extra
fermionic quantities to be made. Firstly, one can read off from (39) and (40) that the product
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S = iψ+3ψ−3 or, more generally, S = i(L0 · ψ+)(L
0 · ψ−) is conserved, where L0 denotes

the bottom layer angular momentum. This is a consequence of the symmetry

δψ+ = ε(L0 · ψ−)L
0 δψ− = ε(L0 · ψ+)L

0.

Since we have restricted ourselves to two Grassmann generators we can replace L0 simply by
L and so find a genuine symmetry of the Lagrangian, involving only the dynamical quantities.
Moreover, between all six fermionic constants mentioned there then exists the remarkable
relation

i(QQ̃ + PP̃ +OÕ) = 2ER

where, as we have seen, the bosonic constants R and E are genuine Noether charges for
arbitrary Grassmann algebra.

6.3. The top layer bosonic equation

We finally have to solve equation (24) for the bosonic top layer, concentrating first on the
homogeneous part of this equation, i.e. ignoring a(x0,ψ+,ψ−).

In the one-dimensional case there were two solutions to the analogue of this equation,
namely,

x1 = cẋ0 x1 = cẋ0
∫ t

t0

1

(ẋ0)2
dt ′.

Whereas the first term is still a solution to the three-dimensional problem, the second one is
not. A more fruitful generalization from the one- to the multidimensional case is given by
the idea that solutions to the top layer equation describe variations of the bottom layer system
with the free constants of that motion. We will explain this idea in more detail below.

To find an explicit form for the solutions we try the following ansatz:

x1(t) = f1(t)x
0(t) + f2(t)ẋ

0(t). (41)

Inserting this ansatz into (24) and using the bottom layer equation (23) we can evaluate both
sides and write them as time-dependent linear combinations of x0 and ẋ0. Comparison of the
coefficients then yields the two relations

f̈ 1(t) +
2

|x0|3 ḟ 2(t) = −3
f1(t)

|x0|3 (42)

2ḟ 1(t) + f̈ 2(t) = 0. (43)

Integrating equation (43) and inserting the result

ḟ 2(t) = −2f1(t) + c (44)

into (42) we get the following equation for f1(t):

f̈ 1(t) = 1

|x0|3 (f1(t)− 2c). (45)

We can recognize that the homogeneous part of this equation is nothing else than the bottom
layer equation and this means that we can write its two solutions as the two component
solutions of (23) given in (29). Since the inhomogeneous solution is just the constant 2c we
can write

f1(t) = C1x
0
1(t) + C2x

0
2(t) + 2c = C1(e + cosh s(t))− C2(e

2 − 1)
1
2 sinh s(t) + 2c.

Applying this result to (44) we find that

f2(t) = −2C1X1(t)− 2C2X2(t)− 3ct + c̃
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where

X1(t) =
∫ t

0
x0

1(t
′) dt ′ = 3

2
es(t) +

1

2
e sinh s(t) cosh s(t) + (e2 − 1) sinh s(t)

X2(t) =
∫ t

0
x0

2(t
′) dt ′ = −(e2 − 1)

1
2

(
cosh s(t) +

1

2
e sinh2 s(t)− 1

)
.

Inserting these results back into our ansatz (41) we find that

x1(t) = C1
(
x0

1(t)x
0(t)− 2X1(t)ẋ

0(t)
)

+ C2
(
x0

2(t)x
0(t)− 2X2(t)ẋ

0(t)
)

+ c(2x0(t)− 3tẋ0(t)) + c̃ẋ0(t). (46)

There are still two solutions to (24) missing. As all solutions found so far lie in the plane of
motion spanned by x0(t) and ẋ0(t) we have to look now at solutions in the third direction, i.e.
for x1

3(t). The equation of motion simplifies here to

ẍ1
3(t) = 1

|x0|3 x
1
3(t)

since x0
3(t) ≡ 0. Again this is just the bottom layer equation of motion, solved by x0

1(t) and
x0

2(t). The general solution to the homogeneous part of (24) is thus given by (46) and

x1(t) = C̃1x
0
1(t)L

0 + C̃2x
0
2(t)L

0. (47)

When we look for an interpretation of these solutions the analogy with the one-dimensional
case will be, as mentioned, quite fruitful. In one dimension the solution to the homogeneous
part of the x1-equation could be written as a sum of variations:

x1(t) = c1
δx0

δt0
(t) + c2

δx0

δE
(t).

The same turns out to be true in the three-dimensional case. To start with, the term with
coefficient c̃ in (46) can be clearly interpreted as variation of our bottom layer solution with
initial time t0:

ẋ0(t) = δx0

δt0
.

Variation with energy can also be found in the solution for x1 as can be seen in the following
way: while solution (29) is valid only for energyE = 1

2 we can obtain a solution for arbitrary
energy E by scaling both x0 and t according to (28). The variation of x0 with energy is then
obtained by comparing x0

E(t) with x0
E+dE(t):

δx0
E

δE
= ∂x0

E

∂E
+
∂x0

E

∂t

dt

dE
= − 1

2E2
x0 + 3(2E)

1
2 tEẋ

0
E.

Evaluating this result at E = 1
2 yields

δx0
E

δE

∣∣∣∣
E= 1

2

= −2x0 + 3tẋ0

leaving us with the term in (46) with the coefficient c. It is quite important to realize that we
have to compare two solutions of different energies at the same physical time t, i.e. we must
not change clocks and use tE as a parameter for the solution x0

E+dE.
These two variations comprised the homogeneous part of the solution to the one-

dimensional problem. For the Coulomb problem there are four more independent ways
of varying the bottom layer solution. One of these consists of rotating the hyperbolic orbit in
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the plane of motion by a small angle φ around the angular momentum axis. The variation is
thus given by

δx0

δφ
= (−x0

2, x
0
1 , 0

)
.

This variation coincides with a linear combination of two terms in (46), namely,

δx0

δφ
= − e

e2 − 1

[(
x0

2x
0 − 2X2ẋ

0
)

+ (e2 − 1)
1
2

(
e

1
2 + e− 1

2

)2
ẋ0

]
.

We can thus interpret the term with coefficient C2 in (46) as a combination of rotation in the
plane of motion and variation of the initial time parameter.

Another way of varyingx0 is to change the eccentricity of the hyperbola which is explicitly
included as a parameter in the solution (29). We find

δx0

δe
= ∂x0

∂e
+
∂x0

∂s

∂s

∂e
=
(

1 − x0
2 ẋ

0
1

L0
3

,
x0

1 ẋ
0
1

L0
3

, 0

)

where we have used that

∂s

∂e
=
(
∂e

∂s

)−1
∣∣∣∣∣
t=const

= − sinh s

1 + e cosh s
.

We again find this variation as a linear combination of two terms in (46), namely,

δx0

δe
= − 1

e2−1

[(
x0

1x
0 − 2X1ẋ

0)− e(2x0 − 3tẋ0)
]

and so the C1-term in (46) describes a combination of variation with eccentricity and energy.
It is now to be expected that the two remaining terms of the homogeneous x1-solution are
connected to a tilt of the plane of motion or, equivalently, to a change in the orientation of
angular momentumL0:

δL0 = δL0
1e1 + δL0

2e2

here e1 and e2 represent unit vectors in the respective directions. We find that

δx0

δL0
1

= x0
1e3

δx0

δL0
2

= x0
2e3

which are evidently proportional to the two terms in (47) since L0 is oriented in the third
direction in our particular solution to the bottom layer system.

Thus we have now derived and found an interpretation for all the terms of the homogeneous
solution to the top layer system. As was the case for one-dimensional systems this solution
describes all the possible variations of the bottom layer with all possible parameters describing
this layer. In our case we need six parameters to describe the motion of the original Coulomb
problem (initial time, energy, eccentricity, orientation of major axis and two parameters
describing the plane of motion) and correspondingly there are six independent solutions to the
top layer.

The last step is now to find one particular solution to the inhomogeneous equation (24).
The general idea is to take linear combinations of the inhomogeneous terms ai , integrate them
over time and multiply them by one of the solutions x1

hom of the homogeneous equation, then
sum over all solutions:

x1
inhom =

n∑
α=1

x1
hom,α

∫ t

0
fα,i (t

′)ai(t ′) dt ′.
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We determine the coefficient functions fα,i by two conditions: firstly, in taking the time
derivative we want to get

ẋ1
inhom =

n∑
α=1

ẋ1
hom,α

∫ t

0
fα,i (t

′)ai(t ′) dt ′

i.e. all the terms involving derivatives of the integrals must cancel each other. Then for the
second time derivative we arrive at

ẍ1
inhom =

n∑
α=1

ẍ1
hom,α

∫ t

0
fα,i (t

′)ai(t ′) dt ′ +

(
n∑
α=1

ẋ1
hom,αfα,i (t)

)
ai(t).

Because the x1
hom,α-terms satisfy the homogeneous equation the first sum will give the

homogeneous part of (24). For the next term to give the inhomogeneous part we need
the second condition that the sum in parenthesis is equal to the unit vector ei .

We will now demonstrate this procedure: for simplicity, we begin with the third component
of x1. Since it decouples from the other components we can safely assume fα,1 = fα,2 = 0,
i.e. writing fα instead of fα,3 we can make the ansatz

x1
inhom,3 = x0

1

∫ t

0
f1(t

′)a3(t
′) dt ′ + x0

2

∫ t

0
f2(t

′)a3(t
′) dt ′. (48)

Our first condition then yields x0
1(t)f1(t)a3(t) + x0

2(t)f2(t)a3(t) = 0 and thus we can set
f1 = cx0

2 and f2 = −cx0
1 . Then we find

ẍ1
inhom,3 = c

(
ẍ0

1

∫ t

0
x0

2(t
′)a3(t

′) dt ′ − ẍ0
2

∫ t

0
x0

1(t
′)a3(t

′) dt ′
)

+ c
(
ẋ0

1x
0
2 − ẋ0

2x
0
1

)
a3(t)

= 1

|x0|3 c
(
x0

1

∫ t

0
x0

2(t
′)a3(t

′) dt ′ − x0
2

∫ t

0
x0

1(t
′)a3(t

′) dt ′
)

− cL0
3a3(t)

and so by equating c = − 1
L0

3
we end up with the required result, namely,

ẍ1
inhom,3 = 1

|x0|3
x1

3 + a3(t).

Since the equations for the first and second components are coupled we need all four remaining
homogeneous solutions to give the correct inhomogeneous term. We just write the result

x1
inhom = 1

L0
3

[
ẋ0
∫ t

0
a1

(
2
X1

L0
3

ẋ0
2x

0
2 + 2

X2

L0
3

(
L0

3 − ẋ0
1x

0
2

)− 3tx0
2

)

+ a2

(
2
X2

L0
3

ẋ0
1x

0
1 − 2

X1

L0
3

(
L0

3 + ẋ0
2x

0
1

)
+ 3tx0

1

)
dt ′

+ (2x0 − 3tẋ0)

∫ t

0

(−a1x
0
2 + a2x

0
1

)
dt ′

+
(
x0

1x
0 − 2X1ẋ

0) ∫ t

0

(
a1
ẋ0

2x
0
2

L0
3

− a2

(
1 +

ẋ0
2x

0
1

L0
3

))
dt ′

+
(
x0

2x
0 − 2X2ẋ

0) ∫ t

0

(
a1

(
1 − ẋ0

1x
0
2

L0
3

)
+ a2

ẋ0
1x

0
1

L0
3

)
dt ′
]
. (49)

Because we know both the bottom layer bosonic and the fermionic quantities contained in a
we can now in principle insert these into the integrals and evaluate the solutions as explicit
functions of time. However, since the knowledge of these functions does not provide new
insights, we refrain from writing them here.
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In summary, the complete solution to the top layer bosonic equation is given by the sum
of the homogeneous solutions (46) and (47) and the inhomogeneous solution given by (48)
and (49).

7. Discussion

Our aim in this paper has been not only to analyse and solve a fascinating problem in
supersymmetric classical mechanics but also to stress the relations between supersymmetric
mechanical models in one and more than one dimension. An example is that the fermionic
variables should really be thought of as components of a 2n-dimensional vector 	 which
moves on a (2n− 1)-sphere. In the one-dimensional case this means that all fermionic vectors
move on circles, which is consistent with our findings in [9]. Furthermore, the motion is
coupled to the motion of a purely bosonic vector, made of the dynamical variables ẋ and U ,
by the supercharges. While these completely determine the fermionic motion in one dimension
we have seen that the situation in higher dimensions is more complicated and the supercharges
only prescribe a geometric subspace for the true solution. Motion on this subspace is then
no longer characterized by the rigid connection of bosonic and fermionic motion found in the
one-dimensional case but exhibits a rather interesting time-dependent phase.

We have shown that for rotationally invariant scalar potentials there will always be a
conserved angular momentum so that to lowest order bosonic motion takes place in a plane.
It is not unreasonable to conjecture that for every direction orthogonal to that plane we will
have to solve a one-dimensional problem for the fermionic quantities corresponding to that
direction—as was the case for the Coulomb problem. This leads us to another generalization
from the one-dimensional case, namely that trivial solutions to the bosonic equations of motion
do not imply that the corresponding fermionic equations can only be solved trivially. In fact,
for our particular problem we found that the third components of the fermionic quantities still
‘felt’ the presence of the bosonic motion in the plane orthogonal to them.

One of the most fruitful ideas for the higher bosonic layers which can be applied in any
dimension turned out to be that solutions for these layers are variations of the solutions of the
classical problem. While in one dimension every solution can be conveniently described by
the energy and some choice for the initial time, in higher dimensions more of these parameters
are needed—in the case of the Coulomb problem we have conveniently related them to the
elements describing the classical orbit. So the view taken in [9] for the one-dimensional case,
namely that supersymmetric dynamics captures information over a whole range of energies of
the system, can be confirmed in a more general sense for our higher dimensional model: the
bosonic (but Grassmann-valued) part of the solution not only describes one particular classical
solution (by its component of order zero) but also includes all possible variations of it with all
possible free parameters or, in other words, a bosonic solution corresponds not just to a point
in the real parameter space but to something like a fuzzy subset.

For reasons of simplicity we have described in this paper solutions for a Grassmann algebra
with two generators. From our experience with the one-dimensional model and the clear links
that it exhibits to the three-dimensional system we have studied in this paper, we conjecture
that the picture for a larger number of generators is similar to that in the one-dimensional
case. There we were able to show that solutions to the fermionic equations corresponding to
three generators consist of two parts: one that looks like the first-order solutions themselves
(i.e. movement on a circle in one dimension) and one that consists of the variations of these
solutions with energy and initial time. Similarly, the bosonic equations for four generators
are solved by the first and second variations of the lowest order bosonic solutions and first
variations of the interaction term.
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It is, therefore, not unreasonable to assume that the general picture in three dimensions is
not much different and that the higher-order equations of motion can be solved by a suitable
combination of (first and higher order) variation terms with respect to the free parameters of
the physical model in question.
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Appendix. Runge–Lenz vector

In this section we want to outline a proof that the supersymmetric Coulomb problem discussed
in this paper does not admit a conserved Runge–Lenz vector. In the classical problem this
conserved quantity cannot be constructed as a Noether charge but arises as a consequence of
the hidden SO(3, 1)-symmetry of the problem, explicitly recognizable in our construction of
the bottom layer solution to the equations of motion in section 6.1. This symmetry must be
broken in the supersymmetric case.

We start with the assumption that there is a conserved Runge–Lenz vector in the
supersymmetric problem. Setting all fermionic variables to zero (for our choice of Grassmann
algebra this can be accomplished by choosingQ=Q̃=P = P̃ =O=Õ=0) we expect to get
the classical result for this vector, namely,

V RL = [L,p] − x̂ (50)

where L is given just by its bosonic part [x,p]. (We will use p ≡ ẋ for this section.)
Note that the Hamiltonian and the angular momentum vector also have this property. Of

course, here all quantities are Grassmann-even rather than real, but this makes no difference
and, of course, (50) is a conserved quantity if we set all fermionic terms in the Lagrangian (1)
to zero.

Returning now to the general case with non-trivial fermionic variables we take the time-
derivative of (50) and find (still taking the classical result for L)

d

dt
V RL = −3

2
i

2
1
2

|x| 3
2

[
p

(
(ψ+ · ψ−)−

3

2
(ψ+ · x̂)(ψ− · x̂)

)
+ ψ+(ψ− · x̂)(p · x̂)

−ψ−(ψ+ · x̂)(p · x̂)− x̂
(

2(ψ+ · p)(ψ− · x̂) + 2(ψ+ · x̂)(ψ− · p)

+ (ψ+ · ψ−)(p · x̂)− 7

2
(ψ+ · x̂)(ψ− · x̂)(p · x̂)

)]
.

The result is clearly non-zero but then we can expect the supersymmetric version of the Runge–
Lenz vector to have an additional fermionic piece. However, the derivative of this piece should
yield exactly the same result as above with an extra minus sign so that the derivative of the
total will be zero and hence V RL is a conserved quantity. We will now try to construct this
fermionic piece.

We start by writing our result for the bosonic part of V RL in components, so that the
linearity in p,ψ+ and ψ− can be seen in a more explicit way:

d

dt
V kRL = −3

2
i

2
1
2

|x| 3
2

(
δij δkl − 3

2
δkl x̂i x̂j +δikx̂j x̂l + δjkx̂i x̂l − 2δil x̂j x̂k − 2δjl x̂i x̂k

− δij x̂kx̂l +
7

2
x̂i x̂j x̂kx̂l

)
ψi+ψ

j
−p

l. (51)
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We now try to assemble all terms whose derivative could possibly contribute to this
result. Fortunately, there are restrictions as to which terms to consider that shorten the list of
expressions to look at.

Firstly, we need only to analyse terms quadratic in the fermionic variables: since V RL is
even their number has to be divisible by two, all terms containing no fermionic quantities at
all can be assumed to be contained already in (50) and if there were four or more fermionic
variables in V RL the time derivative would still contain the same number of these variables
in contradiction to (51). Furthermore, since our system is symmetric under the exchange
ψ+ → −ψ−,ψ− → ψ+ we have to include only terms subject to this symmetry. This leaves
us with multiples of the terms

(A) iψi+ψ
j
−

(B) iψi+ψ
j
+ + iψi−ψ

j
−.

When we classify all terms according to the type of their fermionic part and the even or odd
number of pl-variables involved in each one of them, then the time derivative can be seen as
acting on these classes as follows:

d

dt
(I) type A, pl even → type A,pl odd + type B, pl even

(II) type A, pl odd → type A,pl even + type B, pl odd

(III) type B, pl even → type A,pl even + type B, pl odd

(IV) type B, pl odd → type A,pl odd + type B, pl even.

Here pl even/odd means the number of pl-variables contained in a term is even or odd,
respectively.

Since we want to derive a term of type A with an odd number of pl , namely just one, we
can read off from the summary above that we need not consider combinations of type II or
III, since their time derivatives do not yield such a term nor can they compensate the B-terms
that will arise from combinations I or IV. This means that we only have to consider these latter
combinations. However, even those are not unproblematic: as mentioned, they give rise to
fermionic terms of type B which we do not want in our derivative, so we must hope that we
can cancel these terms against each other.

In the next step we make, preliminarily, the assumption that the number of pl-variables
involved is either zero or one. We will later see that allowing for higher powers of pl will not
change anything.

Up to this point the allowed combinations left are

(a) iψi+ψ
j
− (b)

(
iψ i

+ψ
j
+ + iψ i

−ψ
j
−
)
pk.

We now have to contract these with the remaining natural tensors, namely δij and x̂i ,
to leave only one free index. For terms of type (a) we have the following options:
x̂i x̂j x̂k, x̂iδjk, x̂j δik, x̂kδij .

For terms of type (b) we have some extra restrictions: first, since they are antisymmetric
under the exchange i ↔ j we need not to consider δij -terms that contract the two fermionic
variables. Second, if we include any x̂-term the time-derivative will automatically yield an
additional pl-term so that the result would be quadratic in the pl—a case which we have
excluded above. Therefore the only option left for combination (b) is δjkδil .

We still have to determine the prefactor of each term. It can be derived by dimensional
arguments. As can be read off from the Coulomb–Hamiltonian (22) the dimension of energy
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is length−1. From this we can calculate the dimension of every other dynamical quantity:

x p ψ+ ψ− VRL

length length−1/2 length1/4 length1/4 1

Since the bosonic part of the Runge–Lenz vector is dimensionless we have to multiply
each candidate term for the fermionic part by the appropriate factor of r ≡ |x| to make
it dimensionless, too. We end up with the list in the first column of the following two tables.
These tables describe the action of the time-derivative on each candidate term. In the top
rows we have specified all tensorial combinations that can possibly be generated by applying
the time-derivative to the candidate terms in the first column. The table itself then specifies
the correct numerical prefactors of each tensor in the time-derivative of a particular candidate
term. For example, one can read off from the table entries for the third term that

d

dt

(
1

r1/2
x̂jδik iψi+ψ

j
−

)
=
(

1 · δikδjl +

(
−3

2

)
· δikx̂j x̂l

)
r− 3

2pl iψi+ψ
j
−

+
1

2
·
√

2r−2δjkx̂i iψi+ψ
j
+ + 1 ·

√
2r−2δjkx̂i iψi−ψ

j
−.

For comparison we have added the bosonic part of the Runge–Lenz vector and the tensor
decomposition of its time-derivative in the last row. The result is the following:

r−3/2pl iψi+ψ
j
−

δilδjk δikδjl δij δkl δil x̂j x̂k δjl x̂i x̂k δjkx̂i x̂l δik x̂j x̂l δkl x̂i x̂j δij x̂k x̂l x̂ i x̂j x̂k x̂l

(1) 1
r1/2 x̂

i x̂j x̂k iψi+ψ
j
− 0 0 0 1 1 0 0 1 0 − 7

2

(2) 1
r1/2 x̂

iδjk iψi+ψ
j
− 1 0 0 0 0 − 3

2 0 0 0 0

(3) 1
r1/2 x̂

j δikiψi+ψ
j
− 0 1 0 0 0 0 − 3

2 0 0 0

(4) 1
r1/2 x̂

kδij iψi+ψ
j
− 0 0 1 0 0 0 0 0 − 3

2 0

(5) δilδjkpl (iψi+ψ
j
+ + 0 0 0 3

2

√
2 3

2

√
2 − 3

2

√
2 − 3

2

√
2 0 0 0

iψi−ψ
j
−)

VRL,bos 0 0 − 3
2

√
2 3

√
2 3

√
2 − 3

2

√
2 − 3

2

√
2 9

4

√
2 3

2

√
2 − 21

4

√
2

√
2r−2δjkx̂i iψi+ψ

j
+

√
2r−2δjk x̂i iψi−ψ

j
−

(1) 1
r1/2 x̂

i x̂j x̂k iψi+ψ
j
− 0 0

(2) 1
r1/2 x̂

iδjk iψi+ψ
j
− 1 1

2

(3) 1
r1/2 x̂

j δik iψi+ψ
j
−

1
2 1

(4) 1
r1/2 x̂

kδij iψi+ψ
j
− 0 0

(5) δilδjkpl (iψi+ψ
j
+ + 1

2

√
2 1

2

√
2

iψi−ψ
j
−)

VRL,bos 0 0

We now have to choose appropriate coefficients for the candidate terms such that their sum
equals the bosonic part ofV RL (with an extra minus sign). Looking at the coefficients of δilδjk

and δikδjl we can immediately see that terms (2) and (3) cannot occur since these tensorial
combinations are not part of the bosonic Runge–Lenz vector and cannot be compensated by
any other term. Looking then at the second table we can conclude that term (5) cannot occur
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either—since it contributes a non-zero factor to both columns whereas V RL does not (and the
terms (2) and (3) have to be zero as deduced above).

The column for δij δkl tells us that the coefficient of the fourth term has to be 3
2

√
2—in

contradiction to the column for δij x̂kx̂l which says that the same coefficient has to be
√

2.
Similar contradictions arise for our first candidate term when we compare the columns for
δil x̂j x̂k, δjl x̂i x̂k, δkl x̂i x̂j and x̂i x̂j x̂kx̂l . This leaves us no other option than to conclude that
none of our candidate terms can be added to the bosonic part of the Runge–Lenz vector to
achieve a zero derivative.

One loophole remains. We have excluded further terms of type (b) on the grounds that they
yield terms quadratic in momentum. We might hope, however, that in the right combination
these quadratic terms can cancel each other. There are two possibilities, which can be found
in the first column of the following table; all other tensorial combinations either yield zero or
are up to minus sign identical to the two choices below via the index exchange i ↔ j . On
taking the time derivative of both terms the crucial issue is whether the terms quadratic in pl

can be cancelled against each other, so only quadratic components are shown here:

1
r
plpm(iψi+ψ

j
+ + iψi−ψ

j
−)

x̂i δjmδkl x̂iδjkδlm x̂lδimδjk x̂i x̂k x̂l δjm x̂i x̂ l x̂mδjk

x̂i x̂kδjlpl (iψi+ψ
j
+ + iψi−ψ

j
−) 1 0 0 −2 0

x̂i x̂ lδjkpl (iψi+ψ
j
+ + iψi−ψ

j
−) 0 1 1 0 −2

Evidently, the quadratic terms do not cancel each other. We conclude that no term at most
linear in momentum exists, which could be added to V RL,bos to give a conserved quantity in
the supersymmetric model.

We can of course ask the question whether the fermionic part of the Runge–Lenz vector
could be quadratic or of some higher power in pk . We will now show that the answer to this
question is no. The reason for this can be understood by looking at a general term such as

Aijk1···kmlf (r)pk1 · · ·pkm iψi+ψ
j
− (52)

where Aijk1···kml (l is a free index) is a tensor constructed from two types of building blocks,
δpq and x̂p, and f (r) is some well-determined power of r. Since the tensor is of type A we
can infer that the number m of momentum variables has to be even. Furthermore, to keep (52)
dimensionless f (r) has to be r

1
2 (m−1). Clearly, for every m � 2f (r) is a non-trivial function

of r. This in turn means that the time-derivative in acting on f (r) will produce an extra pk

variable.
There are only two ways to solve this problem: either all the terms in the time derivative

of (52) containing extra momentum variables cancel each other—or we have to make use of
yet higher powers of pk in V RL,ferm to compensate. However, those very terms will by the
same principle give rise to another extra power of pk in the derivative and so on. For this
series to stop at some point we must hope that all terms in the derivative of Aijk1···kml with
m + 1 momentum variables cancel each other. We find that
d

dt

(
Aijk1···kmlr

1
2 (m−1)pk1 · · ·pkm iψi+ψ

j
−
) = d

dt
(Aijk1···kml)r

1
2 (m−1)pk1 · · ·pkm iψi+ψ

j
−

+Aijk1···kml 1
2
(m− 1)r

1
2 (m−3)x̂km+1pkm+1pk1 · · ·pkm iψi+ψ

j
− + · · ·

where the dots indicate further terms containing less thanm+1 momentum variables, in which
we are not interested here.



The classical supersymmetric Coulomb problem 7459

As mentioned above Aijk1···kml consists of a sum of tensors built from δpq and x̂p terms.
While the time derivative does not act on the first type of term, it acts on the second:

d

dt
x̂p = 1

r
(δpl − x̂px̂l)pl .

Thus we can write

d

dt
Aijk1···kml = 1

r
Ãijk1···kmkm+1 lpkm+1

where Ãijk1···kmkm+1l is a new tensor derived from Aijk1···kml in the following way, which can be
seen as an algebraic version of the Leibniz rule: we replace one x̂p tensor in Aijk1···kml with
(δpkm+1 − x̂px̂km+1), repeat this step for all other x̂p tensors contained in Aijk1···kml—replacing
always one tensor at a time—and then sum up every contribution. Therefore

d

dt

(
Aijk1···kmlr

1
2 (m−1)pk1 · · ·pkm iψi+ψ

j
−
)

=
(
Ãijk1···kmkm+1l +

1

2
(m− 1)Aijk1···kml x̂km+1

)

× r 1
2 (m−3)pk1 · · ·pkmpkm+1 iψi+ψ

j
− + · · · .

So, if we want a cancellation of all terms containingm + 1 momentum variables, we need

Ãijk1···kmkm+1 l + 1
2 (m− 1)Aijk1···kml x̂km+1 = 0. (53)

It remains to be shown that this equation cannot be satisfied. Starting with

A
ijk1···kml
0 = x̂i x̂j x̂k1 · · · x̂km x̂l (54)

we find

Ã
ijk1···kmkm+1 l

0 = −(m + 3)x̂i x̂j x̂k1 · · · x̂km x̂km+1 x̂l + δikm+1 x̂j x̂k1 · · · x̂km x̂l
+ · · · + x̂i x̂j x̂k1 · · · x̂kmδlkm+1 .

Inserting these results into (53) we find the necessary condition − 1
2 (m + 7) = 0, i.e.m = −7,

which is a clear contradiction, so a term such as (54) cannot occur. Replacing two x̂k terms
by a δ-tensor we arrive at

A
ijk1···kml
1 = x̂i x̂j x̂k1 · · · x̂km−1δkml (55)

to name but one possible choice. The corresponding Ã is then given by

Ã
ijk1···kmkm+1 l

1 = −(m + 1)x̂i x̂j x̂k1 · · · x̂km−1δkml x̂km+1 + · · ·
where the dots indicate further terms which contain less than m + 1 x̂k-tensors. Equation (53)
then yields − 1

2 (m + 3) = 0, which is again a contradiction.
One can now see that as we subsequently replace two x̂k-terms by one δ-tensor,

equation (53) gives that − 1
2 (m + 7 − 2p) = 0, where p is the total number of x̂k-terms

exchanged as compared to (54). But this shows that m has to be an odd integer in contradiction
to our demand that m be an even number. As a result no type A tensor can have the maximal
number of momentum variables in the fermionic part of the Runge–Lenz vector.

We refrain from repeating the argument for type B tensors since the result is the same:
the time-derivative in acting on these tensors increases the number of pk-variables by one
and there is no way of cancelling all these extra unwanted terms against each other. We can
therefore safely conclude that even the introduction of higher orders of momentum does not
change the overall result, namely that a supersymmetric version of the Runge–Lenz vector
does not exist.
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